There is a noticeable shortening effect for one bond in each ring, i.e. $C(7)-C(8) 1.370(6)$ and $C(1)-C(6)$ 1.366 (7) \AA; no explanation can be offered for this, but exactly the same effect was observed in the 2-chloro derivative (Shefter, 1976) where the two bonds are 1.376 and $1.361 \AA$, respectively. $S-C(7)$ at 1.775 (4) \AA agrees with $1.766 \AA$ found in sodium naphthionate tetrahydrate (Brown \& Corbridge, 1966) and $\mathrm{S}-\mathrm{N}(1)$ at 1.661 (3) \AA agrees with $1.666 \AA$ in γ-sulphanilamide (Alléaume \& Decap, 1965). The other bonds in the molecule are similar to those found in other sulphanilamides and sulphadiazines; a table of comparisons is given by Cook \& Turner (1975).

The two rings are effectively planar, for $\mathrm{C}(1)-(6)$ the r.m.s. deviation is $0.030(5) \AA$ and for $C(7)-(12)$ 0.012 (4) \AA. The dihedral angle between them is $50 \cdot 65(5)^{\circ}$.

References

Ahmed, F. R., Hall, S. R., Pippy, M. E. \& Huber, C. P. (1970). $N R C$ crystallographic programs for the IBM-360 system. National Research Council, Ottawa, Canada.
Alléaume, M. \& Decap, J. (1965). Acta Cryst. 19. 934-938.
Brown, C. J. \& Corbridge, D. E. C. (1966). Acta Cryst. 21, 485-494.
Cook, D. S. \& Turner, M. F. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 1021-1025.
Cook, D. S. \& Turner, M. F. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1379-1383.
International Tables for X-ray Crystallography' (1962). Vol. III. pp. 202-207. Birmingham: Kynoch Press.
Main, P., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1978). multan. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain-la-Neuve, Belgium.
Shefter, E. (1976). Cryst. Struct. Commun. 5, 847-850.
Sheldrick, G. M. (1976). SHELX. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1984). C40, 846-848

Structure of 1-Diphenylmethyl-3-hydroxyazetidinium Chloride, ${ }^{*} \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}^{+} . \mathrm{Cl}^{-}$

By K. R. Acharya, S. S. Tavale and T. N. Guru Row
Physical Chemistry Division, National Chemical Laboratory, Pune-411008, India
and K. Venkatesan
Department of Organic Chemistry, Indian Institute of Science, Bangalore-560 012, India

(Received 17 October 1983; accepted 4 January 1984)

Abstract

M_{r}=275.8\), monoclinic, $\quad P 2_{1} / a, \quad a=$ 12.356 (5),$\quad b=9.054$ (4), $\quad c=14.043$ (4) $\AA, \quad \beta=$ $100.34(3)^{\circ}, \quad V=1545.5 \AA^{3}, \quad Z=4, \quad D_{m}=1.14$, $D_{x}=1.185 \mathrm{Mg} \mathrm{m}^{-3}, \quad \mu(\mathrm{Mo} \mathrm{K} \mathrm{\alpha}, \quad \lambda=0.7107 \AA)=$ $2.77 \mathrm{~mm}^{-1}, F(000)=584.0, T=293 \mathrm{~K}, R=0.053$ for 1088 reflections. The four-membered ring is buckled $13.0^{\circ}\left(\theta=167.0^{\circ}\right)$. The azetidinium moiety is linked to the Cl^{-}ion through a hydrogen bond $[\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ $=3 \cdot 166(5) \AA$ A .

Introduction. Structural studies on compounds containing the azetidine ring are important for the interpretation of their stereochemical and biological significance. In this connection our findings on the molecular geometry of the title compound (DPHA) are presented. The samples of DPHA were provided by Dr Joseph John of the Department of Science and Technology, India.

* NCL Communication No. 3380.

0108-2701/84/050846-03\$01.50

Experimental. Small, pale-yellow needles (from acetone solution). D_{m} by flotation in bromoform/benzene. Crystal $0.38 \times 0.25 \times 0.5 \mathrm{~mm}$. Enraf-Nonius CAD$4 / 11 \mathrm{M}$ single-crystal X-ray diffractometer. Lattice parameters from 20 reflections $\left(12^{\circ}<2 \theta<26^{\circ}\right)$. Data collection: $h, k, \pm l$ with $2 \theta \leq 48^{\circ}$; Mo $K \alpha$ radiation, graphite monochromator; $\omega / 2 \theta$ scan mode. Three standard reflections every 2000 s : no significant variation. 2707 independent reflections, 1088 with $F>3 \sigma(F)$. Lp correction. No absorption or decay corrections. $P 2_{1} / a$, general positions $\pm\left(x, y, z ; \frac{1}{2} x, \frac{1}{2}+y\right.$, $-z$), from systematic absences $0 k 0, k \neq 2 n$ and $h 0 l$, $h \neq 2 n$. Direct methods (MULTAN78; Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978). Anisotropic full-matrix refinement for non-H atoms ($L A L S$; Gantzel, Sparks \& Trueblood, 1961). H from stereochemical considerations and verified from ΔF synthesis, only positions refined, $R=0.053, \quad R_{w}=0.057$; $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ minimized, where $w=1 /(a+b F+$ $c F^{2}$) with $a=3.5, b=1.0$ and $c=0.025$. $(\Delta / \sigma)_{\max }$ $=0.01$. Final $\Delta \rho$ map featureless. No correction for
© 1984 International Union of Crystallography
secondary extinction. Atomic scattering factors from International Tables for X-ray Crystallography (1974).

Table 1. Fractional atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic thermal parameters for non -H atoms with e.s.d.'s in parentheses

$B_{\text {eq }}=\frac{8}{3} \pi^{2} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathrm{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Cl	1102 (1)	4120 (2)	8744 (1)	3.7 (1)
O(1)	333 (4)	2088 (6)	10332 (3)	4.6 (2)
N(1)	-1786 (4)	2502 (6)	8567 (4)	2.5 (2)
C(1)	-1473 (5)	3157 (7)	9580 (5)	2.7 (2)
C(2)	-773 (6)	1791 (8)	9916 (5)	3.3 (2)
C(3)	-923 (6)	1252 (8)	8862 (5)	$2 \cdot 8$ (3)
C(4)	-1682 (5)	3413 (7)	7724 (5)	3.1 (2)
C(5)	-2499 (5)	4678 (7)	7637 (4)	$2 \cdot 5$ (2)
C(6)	-2098 (6)	6066 (9)	7920 (5)	3.8 (2)
C(7)	-2811 (8)	7261 (9)	7854 (6)	5.3 (4)
C(8)	-3923 (8)	7056 (9)	7531 (6)	5.7 (4)
C(9)	-4309 (6)	5692 (10)	7250 (6)	3.9 (3)
C(10)	-3607 (5)	4494 (7)	7319 (5)	$3 \cdot 1$ (2)
C(11)	-1760 (5)	2450 (7)	6815 (4)	3.0 (2)
C(12)	-1043 (5)	2812 (7)	6195 (4)	4.8 (3)
C(13)	-1066 (5)	1964 (8)	5346 (5)	$6 \cdot 2$ (3)
C(14)	-1794 (5)	855 (8)	5149 (5)	$6 \cdot 6$ (3)
C(15)	-2687 (5)	515 (8)	5765 (5)	$6 \cdot 5$ (3)
C(16)	-2470 (5)	1273 (7)	6623 (5)	4.8 (3)

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for non- H atoms with e.s.d.'s in parentheses

$\mathrm{O}(1)-\mathrm{C}(2)$	$1.413(8)$	$\mathrm{N}(1)-\mathrm{C}(4)$	$1.468(8)$
$\mathrm{N}(1)-\mathrm{C}(3)$	$1.559(9)$	$\mathrm{N}(1)-\mathrm{C}(1)$	$1.525(8)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.383(9)$	$\mathrm{C}(5)-\mathrm{C}(10)$	$1.372(9)$
$\mathrm{C}(5)-\mathrm{C}(4)$	$1.517(9)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.39(1)$
$\mathrm{C}(8)-\mathrm{C}(7)$	$1.38(1)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.36(1)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.38(1)$	$\mathrm{C}(4)-\mathrm{C}(11)$	$1.535(9)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.388(8)$	$\mathrm{C}(11)-\mathrm{C}(16)$	$1.375(9)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.415(9)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.343(9)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.550(9)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.371(9)$
$\mathrm{C}(3)-\mathrm{C}(2)$	$1.537(9)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.535(9)$
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(3)$	$117.8(5)$	$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(1)$	$119.3(5)$
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(1)$	$89.3(4)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	$119.3(6)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$117.6(6)$	$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(4)$	$123.1(6)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$119.9(7)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$119.9(8)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$119.7(8)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$120.7(7)$
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	$120.3(6)$	$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	$109.6(5)$
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(11)$	$110.5(5)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(11)$	$114.8(5)$
$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(12)$	$115.8(5)$	$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(16)$	$123.1(6)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)$	$121.1(6)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$118.7(6)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$119.5(6)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$123.4(6)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$110.2(6)$	$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	$125.3(6)$
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$89.1(5)$	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$90.4(5)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$113.5(5)$	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$115.1(5)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$89.7(5)$		

Table 3. Some important torsion angles $\left(^{\circ}\right.$) with e.s.d.'s in parentheses

$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$9.0(5)$	$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$132 \cdot 1(5)$
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$-9.0(5)$	$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$-130.9(5)$
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$-8.9(5)$	$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(1)$	$-126.3(4)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$.	$9.1(5)$	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(1)$	$125.1(5)$

Discussion. Atomic coordinates are given in Table 1.* Bond lengths and bond angles involving non-H atoms are given in Table 2. Table 3 gives some important torsion angles. Fig. 1 gives an ORTEP plot (Johnson, 1965) of the molecule.

The endocyclic $\mathrm{N}-\mathrm{C}$ bonds [1.559(9) and $1.525(8) \AA$] are significantly longer than the exocyclic one which is 1.468 (8) \AA. This feature is generally found in similar structures, such as 1-diphenylmethyl-azetidin-3-ol (hereafter DPAO) (Ramakumar, Venkatesan \& Rao, 1977) and 3-hydroxy-2-methyl-1-(1-methyl-2-phenylethyl)azetidinium chloride (hereafter MPHA) (Wetherington \& Moncrief, 1974). However, these bonds are particularly sensitive to the nature of the hydrogen-bond formation. In DPAO, the endocyclic bonds average 1.496 (7) \AA while in MPHA these are 1.546 (15) and 1.457 (15) \AA. DPHA has a hydrogen bond of the type $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}[\mathrm{O}(1) \cdots \mathrm{Cl}$ $=3.166(5), \quad \mathrm{O}(1)-\mathrm{H}(\mathrm{O} 1)=1.01(5), \quad \mathrm{Cl} \cdots \mathrm{H}(\mathrm{O} 1)=$ $2 \cdot 19$ (6) $\AA, \mathrm{O}(1)-\mathrm{H}(\mathrm{Ol}) \cdots \mathrm{Cl}=166 \cdot 5^{\circ}$], while DPAO has a hydrogen bond of the type $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ [2.815 (7) \AA] and in MPHA there are two hydrogen bonds of the types $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}[3.083(11) \AA]$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}[3.095$ (9) \AA].

The angles within the four-membered ring in DPHA are close to 90° - in DPAO and MPHA one of the angles deviates significantly [86.4 (4) and $86.9(8)^{\circ}$ respectively].

The four-membered ring is buckled. The angle between the planes $N(1), C(1), C(3)$ and $C(1), C(2), C(3)$ is 13° (the angle of puckering, $\theta=167 \cdot 0^{\circ}$). This compares well with the structures of L-azetidine-2carboxylic acid $\left(\theta=169.0^{\circ}\right.$; Berman, McGandy, Burgner \& Van Etten, 1969), N-tert-butyl-3-hydroxy-N-methylazetidinium methanesulphonate $\left(\theta=166 \cdot 0^{\circ}\right.$; McGandy, Berman, Burgner \& Van Etten, 1969) and falls within the predicted values of Towns \& Trefonas (1971). However, DPAO and MPHA differ significantly ($\theta=154.0^{\circ}$ in both cases) and this can be attributed

[^0]

Fig. 1. A perspective view of the molecule.
to the involvement of the ring N in hydrogen-bond formation. The two phenyl rings are inclined to one another at an angle of $67 \cdot 2^{\circ}$.

We thank Drs A. P. B. Sinha, L. M. Pant and N. N. Dhaneshwar for stimulating discussions.

References

Berman, H. M., McGandy, E. L., Burgner, J. W. \& Van Etten, R. L. (1969). J. Am. Chem. Soc. 91, 6177-6182.

Gantzel, P. K., Sparks, R. A. \& Trueblood, K. N. (1961). $L A L S$. A program for the full-matrix least-squares refinement of positional and thermal parameters and scale factors.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
McGandy, E. L., Berman, H. M., Burgner, J. W. \& Van Etten, R. L. (1969). J. Am. Chem. Soc. 91, 6173-6177.

Main, P., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Ramakumar, S., Venkatesan, K. \& Rao, S. T. (1977). Acta Cryst. B33, 824-829.
Towns, R. L. \& Trefonas, L. M. (1971). J. Am. Chem. Soc. 93, 1761-1764.
Wetherington, J. B. \& Moncrief, J. W. (1974). Acta Cryst. B30, 534-537.

Structure of 8-Chloro-1-[(dimethylamino)methyl]-6-phenyl-4H-imidazo-[1,2-a][1,4]benzodiazepine, $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClN}_{4}{ }^{*}$

By Helen J. Butcher and Thomas A. Hamor
Department of Chemistry, University of Birmingham, Birmingham B15 2TT, England

(Received 14 November 1983; accepted 13 January 1984)

Abstract. $M_{r}=350.8$, triclinic, $P \overline{1}, \quad a=9.036$ (4), $b=9.888$ (3), $\quad c=11.035$ (7) $\AA, \quad \alpha=94.62$ (4), $\quad \beta=$ $100.40(5), \quad \gamma=106.75(3)^{\circ}, \quad U=919.4 \AA^{3}, \quad Z=2$, $D_{x}=1.267 \mathrm{Mg} \mathrm{m}^{-3}, \quad \mu(\mathrm{MoK} \mathrm{\alpha}, \quad \lambda=0.71069 \AA)=$ $0 \cdot 18 \mathrm{~mm}^{-1}, F(000)=368$, room temperature, $R=$ 0.042 for 1361 observed reflections. The sevenmembered ring adopts a boat conformation and the angle between the phenyl ring and the fused benzene moiety is $66 \cdot 5(5)^{\circ}$. Bond lengths and angles agree with those found in other 1,4 -benzodiazepines. The benzo and imidazo rings are effectively planar.

Introduction. Many 5 -phenyl-1,4-benzodiazepines exhibit a broad range of psychotherapeutic properties. The title compound (Gall \& Kamdar, 1981) is of the type possessing a five-membered hetero-ring fused across the $\mathrm{N}(1)-\mathrm{C}(2)$ bond of the parent system. It has a rather low affinity for the benzodiazepine receptor in vitro in comparison with the analogous triazolobenzodiazepines triazolam \dagger (Hester, Rudzik \& Kamdar, 1971) and estazolam \ddagger (Meguro \& Kuwada, 1970) which bind considerably better, approximately 100

[^1]0108-2701/84/050848-03\$01.50
times more strongly in the case of estazolam (Braestrup \& Squires, 1978). The structure of the title compound is reported as part of a study of structure-activity relationships for benzodiazepines.

Experimental. Crystal size $0.025 \times 0.15 \times 0.5 \mathrm{~mm}$, Enraf-Nonius CAD-4 diffractometer, cell dimensions from setting angles of 25 reflections, graphitemonochromated Mo $K \alpha$ radiation, no absorption correction, 3237 reflections scanned by $\omega-2 \theta$ scans up to $\theta=25^{\circ}, 1361$ reflections considered observed [I > $2 \cdot 5 \sigma(I)]$, index range $h-10$ to $9, k-11$ to 11,10 to 12 . Two standard reflections, measured every 2 h ; no significant intensity variation. Structure solved by direct methods; H atoms apart from those of methyl groups located from Fourier difference map; least-squares refinement, $\sum w(\Delta F)^{2}$ minimized, methyl groups refined as rigid groups, other H atoms refined isotropically and non- H anisotropically; final calculated shifts all $<0 \cdot 1 \sigma$; $R=0.042, w R=0.052$; weighting scheme, $w=1 /$ $\left[\sigma^{2}(F)+0.0015 F^{2}\right]$; residual electron density in final difference map within ± 0.2 e \AA^{-3}; no correction for secondary extinction.

Computations were carried out with SHELX (Sheldrick, 1978) using complex neutral-atom scattering factors (International Tables for X-ray Crystallography, 1974) and PLUTO (Motherwell \& Clegg, 1978).
© 1984 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39116 (14 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^1]: * Contribution from the Crystallography Unit, Universities of Aston and Birmingham.
 \dagger 8-Chloro-6-(2-chlorophenyl)-1-methyl-4H-s-triazolol4,3a] [1,4]benzodiazepine. Marketed as Halcion (Upjohn).
 \ddagger 8-Chloro-6-phenyl-4H-s-triazolo[4,3-a] $[1,4]$ benzodiazepine.

